
Static Analysis
for

Dynamic 
Updates

Oleg Šelajev
@shelajev



Agenda

● Problem Introduction
○ Dynamic System Updates
○ Analysis of updates



● Main discovery
○ Challenges to overcome

■ packaging and resource management
■ classloading simulation

○ event system
■ event opposition

○ dynamic update policies
■ HotSwap
■ LiveRebel

Agenda



Agenda

● Results
○ case study

■ zt-zip

● Conclusion & Future work



Dynamic System Updates

● Updating a program without interruption
○ long running computation
○ 24 x 7 availability



Dynamic System Updates



Dynamic System Updates

● 40 years of research
○ scientific apps
○ web-scale

● Kernel / User space
● Full / partial solutions
● Process restart + state migration
● On-the-fly patching



Analysis of updates

● Almost non-existent
● Requirements are obvious & natural
● No de-facto solution in industry



Basic Questions

● What exactly is changed?
● Do we support these changes?



Theory of updates

● Application version
○ identifier
○ archive

● Update
○ old version => new version
○ static analysis vs. using runtime info



Existing DSU solutions (Java)

● HotSwap
● Play! Framework
● PROSE system
● LiveRebel



Static Analysis

● Scan archives: old vs. new
● Determine where they differ

○ Folders
■ Scan further

○ Nested archives
■ Extract and analyse it

○ Class files 
■ Analyse structure and members

○ Resources



Static Analysis: details

○ liverebel.xml 
■ application name: apples vs. oranges
■ application version

○ Mark every archive
■ modules
■ libraries



Problem 1: packaging and resources

● Zip + meta-information
○ jar
○ war
○ ear

● Complexity grows
○ more managed components
○ everything can be updated



Problem 2: classloading simulation

● Hierarchy of types
● Special components in program

○ must be updated

● Supertypes
● Must follow runtime logic



Solution 1: event system

● general archives events
● special entries events
● class level events
● method related events
● fields events
● inner classes related events



Event opposition

● new class added
○ class removed

● method body change
○ method body change



Dynamic update policies

● Every DSU solution is different
● Compatible

○ Compatible with warnings

● Incompatible



Case study: HotSwap vs. LiveRebel



Case study: results

● Real world projects:
○ zt-zip

■ OSS library for zip manipulations
■ 50KB





case study: results

● HotSwap:
○ Compatible: 1 (out of 6)
○ Incompatible: 5 (out of 6)

● LiveRebel
○ Compatible: 3 (out of 6)

■ Compatible with warnings: 3 (out of 6)
○ Incompatible: 0



Case study: fun fact

● zt-zip 1.2 => 1.3 differences:

○ META-INF/MANIFEST.MF
○ liverebel.xml



Questions again

● What exactly is changed?
● Do we support these changes?



Conclusion

● Changelog-like diff
○ answers to what is changed

● Compatibility policy file
○ answers if update is supported



Future work

● Engine extensibility
● Analysis

○ more queries
○ understanding real world updates
○ build tools to consume output

● Runtime information


